

Precision Regulator

KPR series

Feature

- Compact design (body width 50mm)
- Smooth pressure adjustment
- Can be combined with KAF201 and KAFM201 products)

How to order

KPR201

(1)

(2)

3

(5)

Τ

(6)

1 Model

KPR101	Rc(PT) 1/8"(Developing)
KPR201	Rc(PT) 1/4"
KPR301	Rc(PT) 1/4", 3/8", 1/2"(Developing)

④ Bracket

(4**)**

Nil None (Standard)	
В	Bracket

② Thread type

Nil	Rc(PT) (Standard)
G	G
N	NPT

⑤ Pressure gauge

Nil		
Т	External gauge (1.0 / 0.4 / 0.2 MPa)	
Р	Digital pressure switch	

③ Port size

		KPR		
		101	201	301
01	Rc(PT)1/8"	•		
02	Rc(PT)1/4"		•	•
03	Rc(PT)3/8"			•
04	Rc(PT)1/2"			•

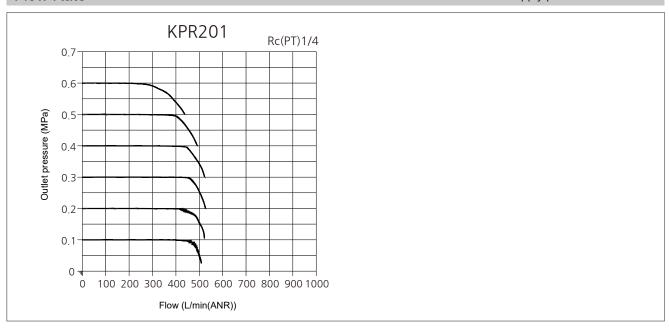
6 Regulating range

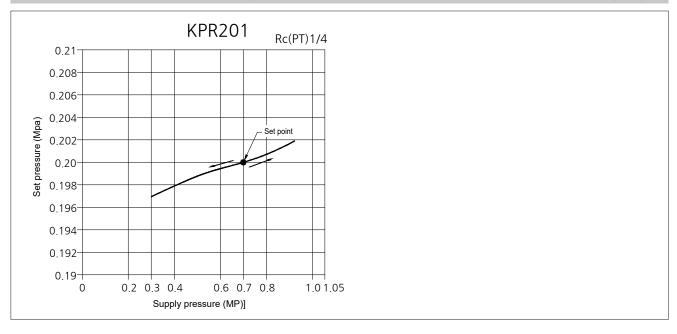
	•
8	0.01 ~ 0.8MPa
4	0.01 ~ 0.4MPa
2	0.005 ~ 0.2MPa

Specifications

Model		KPR201		
Fluid		Compressed air		
Proof pressure		1.5MPa		
Max. operating pressure		1.0MPa		
Min. operati	ng pressure	Set pressure + 0.1MPa		
	For 0.8MPa	0.01 ~ 0.8MPa		
Regulating range	For 0.4MPa	0.01 ~ 0.4MPa		
	For 0.2MPa	0.005 ~ 0.2MPa		
Sensitivity		≤0.2% of Full span		
Repeatability		≤ ±0.5% of Full span		
Air consumption		1.7 L/min(ANR)		
Port size		Rc(PT) 1/4		
Pressure gauge port		Rc(PT) 1/8(2 locations)		
Ambient & fluid temperature		5 ~ 60°C / Digital pressure switch: 0~50°C(No freezing)		
Weight(kg)		0.32		

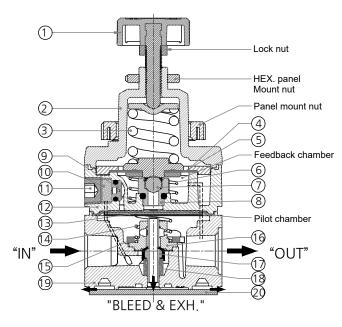
▲ Safety precaution


- Do not use in an atmosphere having corrosive gases, chemicals, sea water, water, water steam, or where there is direct contact with any of these
- Use clean and dry compressed air that is free from oil and foreign substances.
- It is recommended to attach an oil mist filter to the supply side these.


Precision Regulator

* The data shown below are representative values, and are not guarantted.

Flow Rate Supply pressure: 0.7MPa



Pressure Supply pressure: 0.3~0.95MPa, Set pressure: 0.2MPa, Flow rate: 0 L/min(ANR)

Precision Regulator

Structure

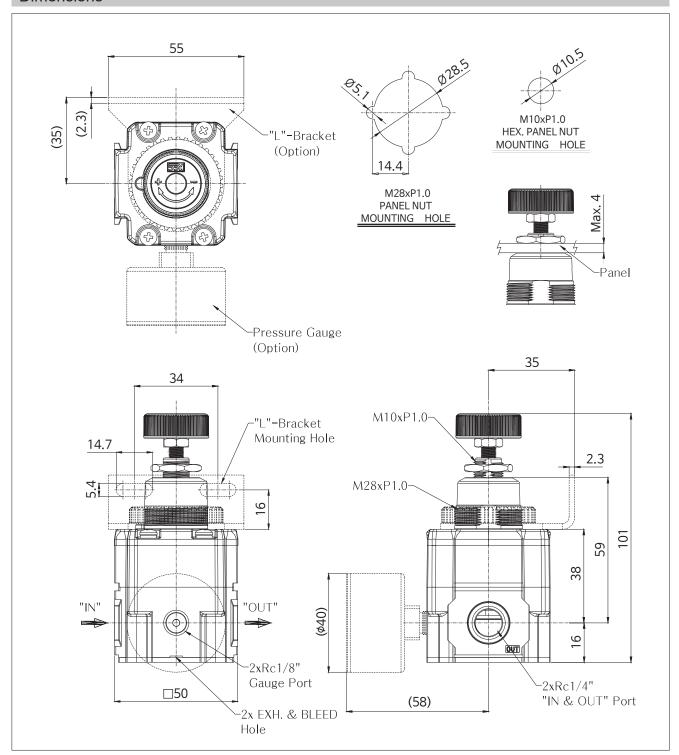
Operation description

Air supplied from IN side is blocked by @(Valve), and the flow of OUT side is waiting, and is supplied to @(Orifice) through branch passage connected to IN side.

The supply air that passed through the orifice fills the pilot room, and the fine pressure that has passed through the gap between the $\ensuremath{\mathbb{T}}(Steel \ ball)$ and $\ensuremath{\mathbb{G}}(Nozzle)$ passes through the feedback chamber and bleeds into the gap between $\ensuremath{\mathbb{G}}$ (Main diaphragm) and $\ensuremath{\mathbb{G}}(Valve)$ through the branch passage connected to the OUT port.

If you press ⑦(Steel ball) by turning the pressure adjustment handle, the gap with ③(Nozzle) is reduced and the pressure in the pilot chamber increases, the increased pressure, press ③ (Main diaphragm) and at the same time press ⑩(Valve) to open the pressure waiting in the IN PORT to the required pressure. The pressure passing through this open gap becomes the set pressure.

This set pressure is supplied to the feedback chamber through the branch passage of the OUT port to maintain equilibrium, when air consumption occurs in the OUT port part, the pressure in the feedback chamber decreases, and the set pressure and force are balanced, and this causes the regulating spring force to become greater than the reduced pressure in the feedback chamber, and the regulating spring force again press $\mathbb{O}(\text{Steel ball})$ to narrow the gap with $\mathbb{O}(\text{Nozzle})$ increase the pressure in the pilot chamber and open $\mathbb{O}(\text{Valve})$ again to compensate for the reduced pressure in the feedback chamber.


The pressure is maintained by repeating this mutual equilibrium operation, and the secondary side surplus pressure continues to be bleed into the minute gap between the $\mathfrak{B}(Main\ diaphragm)$ and $\mathfrak{D}(Valve)$.

If the second side pressure is instantaneously excessively increased than the set pressure, the ③(Main diaphragm) is lifted by the increased second side pressure, increasing the gap between the ③ (Main diaphragm) and the ⑦(Valve), and discharging momentarily.

No	Parts	Materials	No	Parts	Materials
1	Handle Polyacetal		11	Plug bolt	Steel
2	Bonnet Alumin		12	Space body	Aluminum
3	Pressure regulator spring	Spring steel	13	Diaphragm Ass'y	Stainless steel, NBR etc.
4	Diaphragm ring	Aluminum	14	Spring	Stainless steel
5	Diaphragm Ass'y	Stainless steel, NBR, etc.	15	Plate	Stainless steel
6	Spring	Stainless steel	16	Valve gate	Brass
7	Steel ball	Steel	17	Valve Ass'y	Brass, NBR
8	Nozzle ASS'Y	Brass, Stainless steel, NBR	18	NBR bush	NBR
9	Orifice ASS'Y	Brass, Ceramic, NBR	19	Body	Aluminum
10	Orifice filter	Wool	20	Plate	Steel

Dimensions

